In this article, we provide the Python code required to backtest a profitable intraday strategy on SPY. This strategy not only exploits the trading edge presented in our paper, ‘Beat the Market: An Effective Intraday Momentum Strategy for the S&P500 ETF (SPY),’ but it also takes advantage of overnight gaps that typically revert within the first 30 minutes of the trading session.

Furthermore, for this backtest, we use Alpaca as our data provider because it offers 8 years of free intraday data for many US stocks and ETFs. This is a significant improvement, considering that Polygon offers only 2 years of free data.

In this blog post, we build upon the Python code that was translated from MATLAB, as initially presented in our previous article where we backtested two years of free data. Our aim is to make the code more accessible and intuitive, especially for novice quantitative researchers. To enhance readability, we have intentionally avoided complex coding procedures that could increase computational efficiency but might obscure understanding. This updated version extends the backtesting period to over seven years and introduces an overnight gap reversal signaling strategy, enhancing both the scope and depth of our analysis.

Step-by-Step Guide Through the Backtesting Process

Below, we give an overview of the main building blocks behind the backtesting procedure.

Step 1: Download Data – Learn how to get FREE access to daily, intraday, and dividend data from Alpaca.

Step 2: Add Key Variables – We explain how to calculate key indicators presented in the paper, such as VWAP, Move (from Open), Sigma_Open, SPY Rolling Volatility, and many others. These indicators are required to run the backtest of the strategy.

Step 3: Backtesting – Dive into the actual backtesting process; create the main time series needed to conduct statistical inferences and performance evaluation.

Step 4: Study Results – We show how to plot the equity line of the trading strategy in conjunction with the passive Buy & Hold portfolio. Learn how to use historical returns time series to evaluate the profitability and risk behind the intraday momentum strategy.

Backtesting steps

Tools Needed

How to Read This Post

For each step, we will provide the full code first, then explain it step by step. If a step depends on a utility function (a function we wrote that is not built-in Python), we will provide its code after the step code directly before the explanation.

We recommend opening the following Google Colab Notebook and follow explanations in this article when needed.

Click on the Following Link:

Google Colab : Backtesting_BeatTheMarket_WithNightGapReversal_Alpaca.ipynb
backtesting beat_the_market_mean_reversion

Needed Imports for All Steps:

Click to see the Python code for needed imports
Python

import requests
import pandas as pd
from   datetime import datetime, timedelta,time
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from   matplotlib.ticker import FuncFormatter
import statsmodels.api as sm
import pytz

If you have missing libraries, just run this:

Click to see the command prompts
Bash

pip install requests
pip install pandas
pip install numpy
pip install matplotlib
pip install statsmodels

Step 1: Download Data

Overview

In this step, we utilize Alpaca’s API to fetch intraday, daily, and dividend data for the SPY ETF. Even though Alpaca provides many financial time series for each ticker, for the sake of our backtest, we only need historical data for OHLC (open, high, low, close), Volume, Time, and Dividends.

Step 1 Code:

Click to see the Python code for Step 1
Python

symbol = 'SPY'
start_date     = '2018-01-01'
end_date       = '2024-06-05'   
spy_intra_data = fetch_alpaca_data(symbol, '1Min', start_date, end_date)
spy_daily_data = fetch_alpaca_data(symbol, '1D', start_date, end_date)
dividends      = fetch_alpaca_dividends(symbol,start_date,end_date)

Needed functions for Step 1:

Click to see the Python code for fetch_alpaca_data & fetch_alpaca_dividends
Python

API_KEY_ID     = "API_KEY_ID"
API_SECRET_KEY = "API_SECRET_KEY"

def fetch_alpaca_data(symbol, timeframe, start_date, end_date):
    """
    Fetch stock bars data from Alpaca Markets based on the given timeframe.
    """
    url = 'https://data.alpaca.markets/v2/stocks/bars'
    headers = {
        'APCA-API-KEY-ID': API_KEY_ID,
        'APCA-API-SECRET-KEY': API_SECRET_KEY
    }
    
    params = {
        'symbols': symbol,
        'timeframe': timeframe,
        'start': datetime.strptime(start_date, "%Y-%m-%d").isoformat() + 'Z',
        'end': datetime.strptime(end_date, "%Y-%m-%d").isoformat() + 'Z',
        'limit': 10000,
        'adjustment': 'raw',
        'feed': 'sip'
    }

    data_list = []
    eastern = pytz.timezone('America/New_York')  
    utc = pytz.utc  

    market_open  = time(9, 30)  # Market opens at 9:30 AM
    market_close = time(15, 59)  # Market closes just before 4:00 PM

    print("Starting data fetch...")
    while True:
        print(f"Fetching data for symbols: {symbol} from {start_date} to {end_date}")
        response = requests.get(url, headers=headers, params=params)
        if response.status_code != 200:
            print(f"Error fetching data with status code {response.status_code}: {response.text}")
            break

        data = response.json()

        bars = data.get('bars')

        for symbol, entries in bars.items():
            print(f"Processing {len(entries)} entries for symbol: {symbol}")
            for entry in entries:
                try:
                    utc_time = datetime.fromisoformat(entry['t'].rstrip('Z')).replace(tzinfo=utc)
                    eastern_time = utc_time.astimezone(eastern)

                    # Apply market hours filter for '1Min' timeframe
                    if timeframe == '1Min' and not (market_open <= eastern_time.time() <= market_close):
                        continue  # Skip entries outside market hours

                    data_entry = {
                        'volume': entry['v'],
                        'open': entry['o'],
                        'high': entry['h'],
                        'low': entry['l'],
                        'close': entry['c'],
                        'caldt': eastern_time  
                    }
                    data_list.append(data_entry)
                    print(f"Appended data for {symbol} at {eastern_time}")
                except Exception as e:
                    print(f"Error processing entry: {entry}, {e}")
                    continue

        if 'next_page_token' in data and data['next_page_token']:
            params['page_token'] = data['next_page_token']
            print("Fetching next page...")
        else:
            print("No more pages to fetch.")
            break

    df = pd.DataFrame(data_list)
    print("Data fetching complete.")
    return df

def fetch_alpaca_dividends(symbol, start_date, end_date):
    """
    Fetch dividend announcements from Alpaca for a specified symbol between two dates.
    This function splits the request into manageable 90-day segments to comply with API constraints.
    """

    url_base = "https://paper-api.alpaca.markets/v2/corporate_actions/announcements"
    headers = {
        "accept": "application/json",
        "APCA-API-KEY-ID": API_KEY_ID,
        "APCA-API-SECRET-KEY": API_SECRET_KEY
    }

    start_date = datetime.strptime(start_date, "%Y-%m-%d").date()
    end_date = datetime.strptime(end_date, "%Y-%m-%d").date()
    
    dividends_list = []
    current_start = start_date

    while current_start < end_date:
 

        current_end = min(current_start + timedelta(days=89), end_date)
                
        url = f"{url_base}?ca_types=Dividend&since={current_start}&until={current_end}&symbol={symbol}"
        
        response = requests.get(url, headers=headers)
        if response.status_code == 200:
            data = response.json()
            for entry in data:
                dividends_list.append({
                    'caldt': datetime.strptime(entry['ex_date'], '%Y-%m-%d'),
                    'dividend': float(entry['cash'])
                })
        else:
            print(f"Failed to fetch data for period {current_start} to {current_end}: {response.text}")
        
        current_start = current_end + timedelta(days=1)

    return pd.DataFrame(dividends_list)

Explanation:

To initiate the backtest, we require high-quality intraday trading data. Here, we use Alpaca’s API, a reliable source for financial data that provides access to intraday data for FREE starting from 2016. This example demonstrates how to fetch this data using custom Python functions that adjust the timestamp from UTC to NY Market time (from 9:30 AM to 3:59 PM) and filter for market hours only.

After running the codes, the data frames will have the following:

You must obtain a free API Key by registering with Alpaca. Consider securely managing your API key, such as using a virtual environment variable for sensitive information.

When you receive your API Key, remember to update lines 1 and 2 in the code snippet with the actual API Key values, ensuring they are enclosed in quotes, like “EXAMPLE_API_KEY” and not EXAMPLE_API_KEY. If it’s not clear how to do this, a video on our Twitter page will provide a demonstration.

Step 2: Add Key Variables

Overview

In this step, we’ll dive into the calculations of various technical indicators that are crucial for running the backtest in Step 3. These metrics include VWAP, Move (from Open), Sigma_Open, SPY Rolling Volatility, and many others. Each step is broken down for clarity.

Step 2 Code:

Click to see the Python Code for Step 2
Python

# Load the intraday data into a DataFrame and set the datetime column as the index.
df = pd.DataFrame(spy_intra_data)
df['day'] = pd.to_datetime(df['caldt']).dt.date  # Extract the date part from the datetime for daily analysis.
df.set_index('caldt', inplace=True)  # Setting the datetime as the index for easier time series manipulation.

# Group the DataFrame by the 'day' column to facilitate operations that need daily aggregation.
daily_groups = df.groupby('day')

# Extract unique days from the dataset to iterate through each day for processing.
all_days = df['day'].unique()

# Initialize new columns to store calculated metrics, starting with NaN for absence of initial values.
df['move_open'] = np.nan  # To record the absolute daily change from the open price
df['vwap'] = np.nan       # To calculate the Volume Weighted Average Price.
df['spy_dvol'] = np.nan   # To record SPY's daily volatility.

# Create a series to hold computed daily returns for SPY, initialized with NaN.
spy_ret = pd.Series(index=all_days, dtype=float)

# Iterate through each day to calculate metrics.
for d in range(1, len(all_days)):
    current_day = all_days[d]
    prev_day = all_days[d - 1]

    # Access the data for the current and previous days using their groups.
    current_day_data = daily_groups.get_group(current_day)
    prev_day_data = daily_groups.get_group(prev_day)

    # Calculate the average of high, low, and close prices.
    hlc = (current_day_data['high'] + current_day_data['low'] + current_day_data['close']) / 3

    # Compute volume-weighted metrics for VWAP calculation.
    vol_x_hlc = current_day_data['volume'] * hlc
    cum_vol_x_hlc = vol_x_hlc.cumsum()  # Cumulative sum for VWAP calculation.
    cum_volume = current_day_data['volume'].cumsum()

    # Assign the calculated VWAP to the corresponding index in the DataFrame.
    df.loc[current_day_data.index, 'vwap'] = cum_vol_x_hlc / cum_volume

    # Calculate the absolute percentage change from the day's opening price.
    open_price = current_day_data['open'].iloc[0]
    df.loc[current_day_data.index, 'move_open'] = (current_day_data['close'] / open_price - 1).abs()

    # Compute the daily return for SPY using the closing prices from the current and previous day.
    spy_ret.loc[current_day] = current_day_data['close'].iloc[-1] / prev_day_data['close'].iloc[-1] - 1

    # Calculate the 15-day rolling volatility, starting calculation after accumulating 15 days of data.
    if d > 14:
        df.loc[current_day_data.index, 'spy_dvol'] = spy_ret.iloc[d - 15:d-1].std(skipna=False)

# Calculate the minutes from market open and determine the minute of the day for each timestamp.
df['min_from_open'] = ((df.index - df.index.normalize()) / pd.Timedelta(minutes=1)) - (9 * 60 + 30) + 1
df['minute_of_day'] = df['min_from_open'].round().astype(int)

# Group data by 'minute_of_day' for minute-level calculations.
minute_groups = df.groupby('minute_of_day')

# Calculate rolling mean and delayed sigma for each minute of the trading day.
df['move_open_rolling_mean'] = minute_groups['move_open'].transform(lambda x: x.rolling(window=14, min_periods=13).mean())
df['sigma_open'] = minute_groups['move_open_rolling_mean'].transform(lambda x: x.shift(1))

# Convert dividend dates to datetime and merge dividend data based on trading days.
dividends['day'] = pd.to_datetime(dividends['caldt']).dt.date
df = df.merge(dividends[['day', 'dividend']], on='day', how='left')
df['dividend'] = df['dividend'].fillna(0)  # Fill missing dividend data with 0.

Explanation:

2.1 Preparing Data Variables

  • Date and Time Variables:
    • df[‘day’]: This represents the trading day by converting the caldt datetime column into just the date component, effectively separating the date from time.
Click to see the Python Code
Python

df['day'] = pd.to_datetime(df['caldt']).dt.date
  • Index Setting:
    • df.set_index(‘caldt’): This sets the caldt column as the DataFrame’s index, facilitating efficient time-series operations and enabling easier slicing and access based on time.
Click to see the Python Code
Python

df.set_index('caldt', inplace=True)

2.2 Grouping and Data Aggregation

Click to see the Python Code
Python

daily_groups = df.groupby('day')
Click to see the Python Code
Python

all_days = df['day'].unique()

2.3 Initializing Variables for Metrics

Click to see the Python Code
Python

df['move_open'] = np.nan  # To record the absolute daily change from the open price
df['vwap'] = np.nan       # To calculate the Volume Weighted Average Price.
df['spy_dvol'] = np.nan   # To record SPY's daily volatility.
Click to see the Python Code
Python

spy_ret = pd.Series(index=all_days, dtype=float)

2.4 Computation of Daily Metrics

Click to see the Python Code
Python

# Iterate through each day to calculate metrics.
for d in range(1, len(all_days)):
    current_day = all_days[d]
    prev_day = all_days[d - 1]

    # Access the data for the current and previous days using their groups.
    current_day_data = daily_groups.get_group(current_day)
    prev_day_data = daily_groups.get_group(prev_day)

    # Calculate the average of high, low, and close prices.
    hlc = (current_day_data['high'] + current_day_data['low'] + current_day_data['close']) / 3

    # Compute volume-weighted metrics for VWAP calculation.
    vol_x_hlc = current_day_data['volume'] * hlc
    cum_vol_x_hlc = vol_x_hlc.cumsum()  # Cumulative sum for VWAP calculation.
    cum_volume = current_day_data['volume'].cumsum()

    # Assign the calculated VWAP to the corresponding index in the DataFrame.
    df.loc[current_day_data.index, 'vwap'] = cum_vol_x_hlc / cum_volume

    # Calculate the absolute percentage change from the day's opening price.
    open_price = current_day_data['open'].iloc[0]
    df.loc[current_day_data.index, 'move_open'] = (current_day_data['close'] / open_price - 1).abs()

    # Compute the daily return for SPY using the closing prices from the current and previous day.
    spy_ret.loc[current_day] = current_day_data['close'].iloc[-1] / prev_day_data['close'].iloc[-1] - 1

    # Calculate the 15-day rolling volatility, starting calculation after accumulating 15 days of data.
    if d > 14:
        df.loc[current_day_data.index, 'spy_dvol'] = spy_ret.iloc[d - 15:d-1].std(skipna=False)

2.5 Minute-level Calculations:

Click to see the Python Code
Python

df['min_from_open'] = ((df.index - df.index.normalize()) / pd.Timedelta(minutes=1)) - (9 * 60 + 30) + 1
df['minute_of_day'] = df['min_from_open'].round().astype(int)

minute_groups = df.groupby('minute_of_day')
df['move_open_rolling_mean'] = minute_groups['move_open'].transform(lambda x: x.rolling(window=14, min_periods=13).mean())
df['sigma_open'] = minute_groups['move_open_rolling_mean'].transform(lambda x: x.shift(1))

2.6 Handling Dividends

Click to see the Python Code
Python

dividends['day'] = pd.to_datetime(dividends['caldt']).dt.date
df = df.merge(dividends[['day', 'dividend']], on='day', how='left')
df['dividend'] = df['dividend'].fillna(0)

Now that we have our needed Indicators, lets start backtesting!

Step 3: Backtesting

Overview

In this part, we conduct the actual backtest. This section involves defining the trading environment, including assets under management (AUM), commission costs, maximum leverage, volatility multiplier, and many others. To improve the readability of the code, we used a for loop where each iteration represents a historical trading day.

Step 3 Code:

Click to see the Python Code for Step 3
Python

# Constants and settings
AUM_0 = 100000.0
commission = 0.0035
min_comm_per_order = 0.35
band_mult = 1
trade_freq = 30
sizing_type = "vol_target"
target_vol = 0.02
max_leverage = 4
overnight_threshold = 0.02

# Group data by day for faster access
daily_groups = df.groupby('day')

# Initialize strategy DataFrame using unique days
strat = pd.DataFrame(index=all_days)
strat['ret'] = np.nan
strat['AUM'] = AUM_0
strat['ret_spy'] = np.nan

# Calculate daily returns for SPY using the closing prices
df_daily = pd.DataFrame(spy_daily_data)
df_daily['caldt'] = pd.to_datetime(df_daily['caldt']).dt.date
df_daily.set_index('caldt', inplace=True)  # Set the datetime column as the DataFrame index for easy time series manipulation.

df_daily['ret'] = df_daily['close'].diff() / df_daily['close'].shift()


# Loop through all days, starting from the second day
for d in range(1, len(all_days)):
    current_day = all_days[d]
    prev_day = all_days[d-1]

    if prev_day in daily_groups.groups and current_day in daily_groups.groups:
        prev_day_data = daily_groups.get_group(prev_day)
        current_day_data = daily_groups.get_group(current_day)

        if 'sigma_open' in current_day_data.columns and current_day_data['sigma_open'].isna().all():
            continue

        prev_close_adjusted = prev_day_data['close'].iloc[-1] - df.loc[current_day_data.index, 'dividend'].iloc[-1]

        open_price = current_day_data['open'].iloc[0]
        current_close_prices = current_day_data['close']
        spx_vol = current_day_data['spy_dvol'].iloc[0]
        vwap = current_day_data['vwap']

        sigma_open = current_day_data['sigma_open']
        UB = max(open_price, prev_close_adjusted) * (1 + band_mult * sigma_open)
        LB = min(open_price, prev_close_adjusted) * (1 - band_mult * sigma_open)

        # Determine trading signals
        signals = np.zeros_like(current_close_prices)
        signals[(current_close_prices > UB) & (current_close_prices > vwap)] = 1
        signals[(current_close_prices < LB) & (current_close_prices < vwap)] = -1


        # Position sizing
        previous_aum = strat.loc[prev_day, 'AUM']

        if sizing_type == "vol_target":
            if math.isnan(spx_vol):
                shares = round(previous_aum / open_price * max_leverage)
            else:
                shares = round(previous_aum / open_price * min(target_vol / spx_vol, max_leverage))

        elif sizing_type == "full_notional":
            shares = round(previous_aum / open_price)

        # Apply trading signals at trade frequencies
        trade_indices = np.where(current_day_data["min_from_open"] % trade_freq == 0)[0]
        exposure = np.full(len(current_day_data), np.nan)  # Start with NaNs
        exposure[trade_indices] = signals[trade_indices]  # Apply signals at trade times

        # Custom forward-fill that stops at zeros
        last_valid = np.nan  # Initialize last valid value as NaN
        filled_values = []   # List to hold the forward-filled values
        for value in exposure:
            if not np.isnan(value):  # If current value is not NaN, update last valid value
                last_valid = value
            if last_valid == 0:  # Reset if last valid value is zero
                last_valid = np.nan
            filled_values.append(last_valid)

        exposure = pd.Series(filled_values, index=current_day_data.index).shift(1).fillna(0).values  

        # Calculate trades count based on changes in exposure
        trades_count = np.sum(np.abs(np.diff(np.append(exposure, 0))))

        overnight_move = (open_price / prev_close_adjusted - 1)
        open_trade_signal = -np.sign(overnight_move) * (abs(overnight_move) > overnight_threshold)

        trade_time_row = current_day_data[current_day_data['min_from_open'] == trade_freq]
        exit_price_minute_version_trade = trade_time_row['close'].iloc[0]

        # Calculate PnL of Mean-Reversion Portfolio (MRP)
        pnl_mean_reversion_trade = open_trade_signal * shares * (exit_price_minute_version_trade - open_price)
        comm_mean_reversion_trade = 2 * max(min_comm_per_order, commission * shares) * abs(open_trade_signal)
        net_pnl_mean_reversion = pnl_mean_reversion_trade - comm_mean_reversion_trade

        # Calculate PnL of Intraday Momentum Portfolio (IMP)
        change_1m = current_close_prices.diff()
        gross_pnl = np.sum(exposure * change_1m) * shares
        commission_paid = trades_count * max(min_comm_per_order, commission * shares)
        net_pnl_mom = gross_pnl - commission_paid

        # Calculate Total PNL
        net_pnl = net_pnl_mom + net_pnl_mean_reversion

        # Update the daily return and new AUM
        strat.loc[current_day, 'AUM'] = previous_aum + net_pnl
        strat.loc[current_day, 'ret'] = net_pnl / previous_aum

        # Save the passive Buy&Hold daily return for SPY
        strat.loc[current_day, 'ret_spy'] = df_daily.loc[df_daily.index == current_day, 'ret'].values[0]

Explanation:

3.1 Initial Setup and Parameters

Click to see the Python Code
Python

AUM_0 = 100000.0
commission = 0.0035
min_comm_per_order = 0.35
band_mult = 1
trade_freq = 30
sizing_type = "vol_target"
target_vol = 0.02
max_leverage = 4
overnight_threshold = 0.02

3.2 Data Preparation:

Click to see the Python Code
Python

# Group data by day for faster access
daily_groups = df.groupby('day')

# Initialize strategy DataFrame using unique days
strat = pd.DataFrame(index=all_days)
strat['ret'] = np.nan
strat['AUM'] = AUM_0
strat['ret_spy'] = np.nan

3.3 Calculate Daily Returns for SPY

Click to see the Python Code
Python

df_daily = pd.DataFrame(spy_daily_data)
df_daily['caldt'] = pd.to_datetime(df_daily['caldt']).dt.date
df_daily.set_index('caldt', inplace=True)
df_daily['ret'] = df_daily['close'].diff() / df_daily['close'].shift()

3.4 Trading Logic

Click to see the Python Code
Python

for d in range(1, len(all_days)):
    current_day = all_days[d]
    prev_day = all_days[d-1]

    if prev_day in daily_groups.groups and current_day in daily_groups.groups:
        prev_day_data = daily_groups.get_group(prev_day)
        current_day_data = daily_groups.get_group(current_day)

        if 'sigma_open' in current_day_data.columns and current_day_data['sigma_open'].isna().all():
            continue  # Skip if no valid sigma data

3.5 Position Sizing and Trading Signals

Click to see the Python Code
Python

        previous_aum = strat.loc[prev_day, 'AUM']

        if sizing_type == "vol_target":
            spx_vol = current_day_data['spy_dvol'].iloc[0]
            if math.isnan(spx_vol):
                shares = round(previous_aum / open_price * max_leverage)
            else:
                shares = round(previous_aum / open_price * min(target_vol / spx_vol, max_leverage))
        elif sizing_type == "full_notional":
            shares = round(previous_aum / open_price)
Click to see the Python Code
Python

        UB = max(open_price, prev_close_adjusted) * (1 + band_mult * sigma_open)
        LB = min(open_price, prev_close_adjusted) * (1 - band_mult * sigma_open)
        signals = np.zeros_like(current_close_prices)
        signals[(current_close_prices > UB) & (current_close_prices > vwap)] = 1
        signals[(current_close_prices < LB) & (current_close_prices < vwap)] = -1

3.6 Trade Execution

Click to see the Python Code
Python

        # Apply trading signals at trade frequencies
        trade_indices = np.where(current_day_data["min_from_open"] % trade_freq == 0)[0]
        exposure = np.full(len(current_day_data), np.nan)
        exposure[trade_indices] = signals[trade_indices]

        # Custom forward-fill logic
        filled_values = []
        last_valid = np.nan
        for value in exposure:
            if not np.isnan(value):
                last_valid = value
            if last_valid == 0:
                last_valid = np.nan
            filled_values.append(last_valid)
        exposure = pd.Series(filled_values, index=current_day_data.index).shift(1).fillna(0).values

3.7 Profit and Loss Calculation of the Mean-Reversion Portfolio

Click to see the Python Code
Python

# Calculate the percentage change from the previous day's closing price to today's opening price
overnight_move = (open_price / prev_close_adjusted - 1)
# Signal based on whether the overnight move is greater than the threshold; trade against the move
open_trade_signal = -np.sign(overnight_move) * (abs(overnight_move) > overnight_threshold)

trade_time_row = current_day_data[current_day_data['min_from_open'] == trade_freq]
exit_price_minute_version_trade = trade_time_row['close'].iloc[0]

# Calculate PnL of Mean-Reversion Portfolio (MRP)
pnl_mean_reversion_trade = open_trade_signal * shares * (exit_price_minute_version_trade - open_price)
comm_mean_reversion_trade = 2 * max(min_comm_per_order, commission * shares) * abs(open_trade_signal)
net_pnl_mean_reversion = pnl_mean_reversion_trade - comm_mean_reversion_trade

3.8 Profit and Loss Calculation of the Intraday Momentum Portfolio

Click to see the Python Code
Python

# Calculate PnL of Intraday Momentum Portfolio (IMP)
change_1m = current_close_prices.diff()
gross_pnl = np.sum(exposure * change_1m) * shares
commission_paid = trades_count * max(min_comm_per_order, commission * shares)
net_pnl_mom = gross_pnl - commission_paid

3.9 Aggregate the PnL from Intraday Momentum Portfolio and Mean-Reversion Portfolio

Click to see the Python Code
Python

# Calculate the aggregate daily PnL summing the PnL of MRP and PnL of IMP
net_pnl = net_pnl_mom + net_pnl_mean_reversion

3.10 Record Passive Buy&Hold and Active Strategy Returns

Click to see the Python Code
Python

# Update the daily return and new AUM
strat.loc[current_day, 'AUM'] = previous_aum + net_pnl
strat.loc[current_day, 'ret'] = net_pnl / previous_aum

# Save the passive Buy&Hold daily return for SPY
strat.loc[current_day, 'ret_spy'] = df_daily.loc[df_daily.index == current_day, 'ret'].values[0]

And that’s it, our backtesting is done! lets see the results in the next step.

Step 4: Study Results

Overview

In this step, we analyze the results of the trading strategy by visualizing the growth of Assets Under Management (AUM) over time for both the strategy and a passive investment in the S&P 500. Additionally, we compute various performance metrics to assess the strategy’s effectiveness.

Step 4 Code:

Click to see the Python Code
Python

# Calculate cumulative products for AUM calculations
strat['AUM_SPX'] = AUM_0 * (1 + strat['ret_spy']).cumprod(skipna=True)

# Create a figure and a set of subplots
fig, ax = plt.subplots()

# Plotting the AUM of the strategy and the passive S&P 500 exposure
ax.plot(strat.index, strat['AUM'], label='Momentum', linewidth=2, color='k')
ax.plot(strat.index, strat['AUM_SPX'], label='S&P 500', linewidth=1, color='r')

# Formatting the plot
ax.grid(True, linestyle=':')
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %y'))
plt.xticks(rotation=90)
ax.yaxis.set_major_formatter(FuncFormatter(lambda x, _: f'${x:,.0f}'))
ax.set_ylabel('AUM ($)')
plt.legend(loc='upper left')
plt.title('Intraday Momentum Strategy', fontsize=12, fontweight='bold')
plt.suptitle(f'Commission = ${commission}/share', fontsize=9, verticalalignment='top')

# Show the plot
plt.show()

# Calculate additional stats and display them
stats = {
    'Total Return (%)': round((np.prod(1 + strat['ret'].dropna()) - 1) * 100, 0),
    'Annualized Return (%)': round((np.prod(1 + strat['ret']) ** (252 / len(strat['ret'])) - 1) * 100, 1),
    'Annualized Volatility (%)': round(strat['ret'].dropna().std() * np.sqrt(252) * 100, 1),
    'Sharpe Ratio': round(strat['ret'].dropna().mean() / strat['ret'].dropna().std() * np.sqrt(252), 2),
    'Hit Ratio (%)': round((strat['ret'] > 0).sum() / (strat['ret'].abs() > 0).sum() * 100, 0),
    'Maximum Drawdown (%)': round(strat['AUM'].div(strat['AUM'].cummax()).sub(1).min() * -100, 0)
}


Y = strat['ret'].dropna()
X = sm.add_constant(strat['ret_spy'].dropna())
model = sm.OLS(Y, X).fit()
stats['Alpha (%)'] = round(model.params.const * 100 * 252, 2)
stats['Beta'] = round(model.params['ret_spy'], 2)

print(stats)

4.1 AUM Calculation for Active and Passive S&P 500 Exposure

Click to see the Python Code
Python

# Calculate the cumulative AUM for the strategy and S&P 500
strat['AUM_SPX'] = AUM_0 * (1 + strat['ret_spy']).cumprod(skipna=True)

4.2 Plotting AUM

Click to see the Python Code
Python

# Create a figure and a set of subplots
fig, ax = plt.subplots()

# Plotting the AUM of the strategy and the passive S&P 500 exposure
ax.plot(strat.index[::20], strat['AUM'].iloc[::20], label='Momentum + MeanReversion', linewidth=2, color='k')
ax.plot(strat.index[::20], strat['AUM_SPX'].iloc[::20], label=f'{symbol} Buy & Hold', linewidth=1, color='r')

# Formatting the plot
ax.grid(True, linestyle=':')
ax.xaxis.set_major_locator(mdates.YearLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xticks(rotation=90)
ax.set_ylabel('AUM ($)')

plt.legend(loc='upper left')
plt.title('Intraday Momentum Strategy+MeanReversion Strategy', fontsize=12, fontweight='bold')
plt.suptitle(f'Commission = ${commission}/share', fontsize=9, verticalalignment='top')

# Show the plot
plt.show()

4.3 Calculate Additional Statistics

Click to see the Python Code
Python

# Calculating key performance metrics for the strategy
stats = {
    'Total Return (%)': round((np.prod(1 + strat['ret'].dropna()) - 1) * 100, 0),
    'Annualized Return (%)': round((np.prod(1 + strat['ret'].dropna()) ** (252 / len(strat['ret'].dropna())) - 1) * 100, 1),
    'Annualized Volatility (%)': round(strat['ret'].dropna().std() * np.sqrt(252) * 100, 1),
    'Sharpe Ratio': round(strat['ret'].dropna().mean() / strat['ret'].dropna().std() * np.sqrt(252), 2),
    'Hit Ratio (%)': round((strat['ret'] > 0).sum() / (strat['ret'].abs() > 0).sum() * 100, 0),
    'Maximum Drawdown (%)': round(strat['AUM'].div(strat['AUM'].cummax()).sub(1).min() * -100, 0)
}

4.4 Regression Analysis for Alpha and Beta

Click to see the Python Code
Python

# Prepare data for regression
Y = strat['ret'].dropna()
X = sm.add_constant(strat['ret_spy'].dropna())

# Conduct linear regression
model = sm.OLS(Y, X).fit()

# Extract alpha and beta from the regression results
stats['Alpha (%)'] = round(model.params.const * 100 * 252, 2)
stats['Beta'] = round(model.params['ret_spy'], 2)

Results

Final Words

If you have questions or Ideas feel free to contact us on twitter/X or contact us directly here