Abstract

In recent years, cryptocurrencies have attracted significant attention from both retail traders and large institutional investors. As their involvement in digital assets grows, so does their interest in active and risk-aware investment frameworks. This paper applies a well-established trend-following methodology, successfully deployed for decades in traditional asset classes, to Bitcoin, and then extends the analysis to a comprehensive, survivorship bias-free dataset covering all cryptocurrencies traded since 2015, to evaluate whether its robustness persists in the emerging digital asset space. We propose an ensemble approach that aggregates multiple Donchian channel-based trend models, each calibrated with different lookback periods, into a single signal, as well as a volatility-based position sizing method. This model, applied to a rotational portfolio of the top 20 most liquid coins, achieved notable net-of-fees returns, with a Sharpe ratio above 1.5 and an annualized alpha of 10.8% versus Bitcoin. While assessing the impact of transaction costs, we propose a straightforward yet effective portfolio technique to mitigate these expenses. Finally, we investigate correlations between crypto-focused trend-following strategies and those applied to traditional asset classes, concluding with a discussion on how investors can execute the proposed strategy through both on-chain and off-chain implementations.

Read paper from here: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5209907